SELECCIÓN

1) El conjunto solución de $2x-6x^2=-1+3x$ es

A)
$$\left\{ \begin{array}{c} 1 \\ 4 \end{array} \right\}$$

$$\mathsf{B}) \left\{ -\frac{1}{2} \right\}$$

$$C) \left\{ -\frac{1}{3}, \frac{1}{2} \right\}$$

D)
$$\left\{ -\frac{1}{2}, \frac{1}{3} \right\}$$

2) El conjunto solución de $x^2 - 6x + 12 = 2$ es

D)
$$\left\{ 2 + \sqrt{11}, 2 - \sqrt{11} \right\}$$

- 3) Si la longitud de cada lado de un cuadrado aumenta en 12, y se obtiene otro cuadrado con un área igual, nueve veces al área del cuadrado inicial, entonces, ¿cuál es el área del cuadrado inicial?
 - A) 6
 - B) 24
 - C) 36
 - D) 324
- 4) Uno de los factores de $6x^2 11xy + 4y^2$ es
 - A) 2x-y
 - B) 3x y
 - c) 2x 4y
 - D) 3x + 4y
- 5) Uno de los factores de $y^2 4 x^2 + 4x$ es
 - A) x-4
 - B) v + 2
 - c) y x 2
 - D) y x + 2

6) Uno de los factores de $\frac{5}{2}x^2 - x^3 - \frac{3}{2}x$ es

A)
$$x+1$$

B)
$$1 - 2x$$

C)
$$2x - 3$$

D)
$$3 + 2x$$

7) La expresión $\frac{a}{x-a} - \frac{ax+x^2}{x^2-a^2}$ es equivalente a

C)
$$-1$$

8) La expresión $\frac{(x-5)^2}{9} \cdot \frac{3x+15}{x^2-25}$ es equivalente a

A)
$$x + 5$$

B)
$$\frac{x-5}{3}$$

C)
$$\frac{x+5}{3}$$

D)
$$\frac{(x-5)^3}{27}$$

- 9) Dos personas A y B tienen juntas ochenta y nueve colones. Si B tiene cuatro colones menos que el doble de lo que tiene A, entonces ¿cuántos colones tiene B?
 - A) 28
 - B) 31
 - C) 40
 - D) 58

10) Si "x" de representa la medida de la diagonal de un cuadrado, entonces el perímetro "P" en términos de "x" es

A)
$$P(x) = \frac{x^2}{2}$$

$$P(x) = 2x^2$$

$$C) P(x) = 2x\sqrt{2}$$

D)
$$P(x) = 4x\sqrt{2}$$

11) Considere las siguientes relaciones:

1.
$$w: \mathbb{N} \to \mathbb{Q} \text{ con } w(x) = \frac{x}{2}$$

I.
$$w: \mathbb{N} \to \mathbb{Q} \text{ con } w(x) = \frac{x}{2}$$

II. $v: \mathbb{R} - \{0\} \to \mathbb{R} \text{ con } v(x) = \frac{1}{x}$

De ellas, ¿Cuáles corresponden a una función?

- A) Ambas.
- B) Ninguna.
- C) Solo la I.
- D) Solo la II.

Para la función f dada por $f(x) = \frac{1}{3} - 3x$, la preimagen de 12) -1 es

Sea la función f : $\{\ 2,\ 3\ \} \rightarrow \{\ 1\ \}$, entonces un elemento que pertenece al gráfico de f es

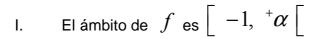
- A) (1, 3)
- B) (2, 1)
- c) (1, 2)
- D) (2, 3)

14) El dominio máximo de la función f dada por $f(x) = \sqrt{x-1}$ corresponde a

- A) \mathbb{R}
- B) $\left[0, \alpha\right]$
- C) $\left[1, \alpha\right[$
- D) $\mathbb{R} \{1\}$

15) La función f dada por $f(x) = \frac{4}{3}x + \frac{2}{3}$ interseca el eje "y" en

A)
$$\left(0, \frac{2}{3}\right)$$

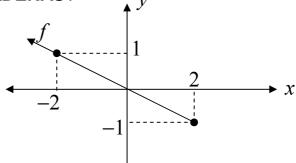

$$\mathsf{B})\left(\frac{2}{3},\,0\right)$$

C)
$$\left(0, -\frac{2}{3}\right)$$

$$D$$
) $\left(-\frac{1}{2}, 0\right)$

- 16) Si f es una función constante de la forma por f(x) = mx + by contiene a (5, 3), entonces ámbito es
 - A) \mathbb{R}
 - B) { 3 }
 - C) [0, 3]
 - D) [3, 5]

17) De acuerdo con los datos de la gráfica de la función, f, considere las siguientes proposiciones:



f es estrictamente creciente

De ellas, ¿cuáles son VERDADERAS?

- B) Ninguna.
- C) Solo la I.
- D) Solo la II.

18) El salario mensual "S" en colones de un comerciante por vender "X" cantidad de unidades de un producto, está dado por S = 200x + 200000 . Si en el mes de octubre el salario del comerciante fue de ¢301400 y en el mes de noviembre fue de ¢326200, entonces. ¿cuántas unidades vendió más en noviembre que en octubre?

- A) 124
- B) 517
- C) 594
- D) 24800

19) La dueña de una fábrica de pantalones estima que el costo diario de operación sin producir es de $6000 y cuando se fabrican relación lineal con la producción total diaria de "x" cantidad de pantalones, entonces la ecuación de la recta que describe la situación anterior es

A)
$$C = \frac{x}{2000} - 43$$

B)
$$C = \frac{x}{2000} + 86000$$

C)
$$C = 2000x + 86000$$

D)
$$C = 40000x + 860000$$

20) La ecuación de la recta que contiene el punto (1, -2) ,y es paralela a la recta dada por 2y-x=3 corresponde a

A)
$$y = -2x$$

B)
$$y = \frac{x}{2} + 2$$

C)
$$y = -2x - 3$$

D)
$$y = \frac{x}{2} - \frac{5}{2}$$

21) Si $\ell_1 \perp \ell_2$ y la ecuación de ℓ_1 es $y-5=\frac{2x}{3}$, entonces una ecuación para ℓ_2 es

A)
$$y = \frac{2x-1}{3}$$

B)
$$y = \frac{2 - 2x}{3}$$

c)
$$y = \frac{5-3x}{2}$$

D)
$$y = \frac{3x+4}{2}$$

22) Considere la siguiente gráfica:

De acuerdo con los datos de la gráfica de la función $f\,$, el ámbito es

- A) [0, 1]
- B) [0, 2]
- c) [-2, 0]
- D) [-2, 2]

23) Para la función f dada por $f(x) = x^2 - 5x$, un intervalo donde f(x) > 0 es

B)
$$\left[\frac{5}{2}, 5\right[$$

C)
$$0, \frac{5}{2}$$

D)
$$] \alpha$$
, 0

- 24) Considere las siguientes proposiciones referidas a la función fdada por $f(x) = -4.9x^2 + 20x + 30$, que describe la trayectoria de los "x" segundos de haberse lanzado un proyectil hacia arriba, desde el techo de un edificio:
 - I. La altura del edificio desde donde se lanza el proyectil es de 20.
 - II. En su trayectoria, la altura máxima que alcanza el proyectil, respecto al plano de donde se lanzó es de aproximadamente 50,41.

¿De ellas, ¿cuáles son VERDADERAS?

- A) Ambas.
- B) Ninguna.
- C) Solo la I.
- D) Solo la II.

- 25) Si la productividad "P" de una empresa con "x" cantidad de empleados está dada por $p(x) = -x^2 + 160x$, entonces. ¿cuántos empleados garantizan la productividad máxima de la empresa?
 - A) 40
 - B) 80
 - C) 160
 - D) 6400
- 26) Considere las siguientes proposiciones para $f: A \rightarrow B$ una función biyectiva:
 - Con certeza el dominio de f es igual al dominio de f^{-1} ١.
 - Con certeza el codominio de f es igual al ámbito de f^{-1} II.

De ellas, ¿cuáles son VERDADERAS?

- A) Ambas
- B) Ninguna
- C) Solo la I
- D) Solo la II

- 27) Si el dominio de la función f dada por $f(x) = \frac{1+x}{4}$ es $\begin{bmatrix} -5, 3 \end{bmatrix}$, entonces para que posea inversa el codominio de f corresponde a
 - A) [-1, 1]
 - B) [-5, 1]
 - C) [-1, 4]
 - D) [-21, 11]
- 28) Considere las siguientes proposiciones para la función exponencial f dada por $f(x) = a^x$, con 0 < a < 1 y para $m, n \in \mathbb{R}$
 - Si m < n, entonces f(m) > f(n)١.
 - Si el dominio de f es \mathbb{R}^- , entonces el ámbito de f es 0, 1

De ellas, ¿cuáles son VERDADERAS?

- A) Ambas
- B) Ninguna
- C) Solo la I
- D) Solo la II

- 29) Si f es una función exponencial dada por $f(x) = a^x$, con $1 < a \ \ y \ 0 < x$, entonces el ámbito de f es
 - A) \mathbb{R}
 - B)] 0, 1 [
 - c)] 1, α
 - D) $0, \alpha$
- 30) La solución de $\left(\frac{9}{4}\right)^{x+1} = \sqrt[4]{\frac{16}{81}}$ es
 - A) 0
 - B) -1
 - c) $-\frac{1}{2}$
 - D) $-\frac{3}{2}$

31) La solución de $(0,4)^{3-x} = \left(\frac{25}{4}\right)^{3x-1}$ es

- A) $\frac{1}{5}$
- B) $\frac{5}{7}$
- c) $-\frac{1}{5}$
- D) $-\frac{4}{5}$

32) El valor de $f(x) = \log_a x$, si 2 < x < 4 y f(x) < 0 entonces un valor de "a" puede ser

- A) $\frac{3}{2}$
- B) $\frac{5}{3}$
- C) $\frac{7}{8}$
- D) $\frac{11}{4}$

33) Considere las siguientes proposiciones para la función f dada por $f(x) = \log_a x$.

- I. Si f es decreciente y x > 1 entonces f(x) < 0
- Si f es creciente y 0 < x < 1 entonces f(x) > 0II.

¿Cuáles de ellas son VERDADERAS?

- A) Ambas.
- B) Ninguna.
- C) Solo la I.
- D) Solo la II.

34) Si $\left(16,4\right)$ pertenece al gráfico de la función logarítmica fdada por $f(x) = \log_a x$ entonces la preimagen de 8 en la función f es

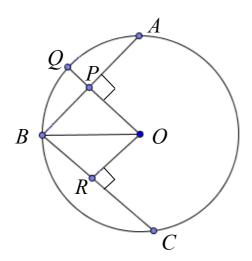
- A) 3
- B) $\sqrt[4]{2}$
- C) 64
- D) 256

35) Considere el siguiente caso hipotético:

El número de células "n" de cierto organismo se determina por $n(x) = \log_2 x$, donde "x" es el número de gametos de dicha especie. Si el organismo posee 4096 gametos entonces, ¿cuántas células posee?

- A) 4
- B) 8
- C) 12
- D) 4096

36) La solución de $-\log_2(x-1)=2$ es


- A) 5
- B) $\frac{3}{2}$
- D) -1

37) La expresión "x" para que se cumpla que $\log x = -4$ es

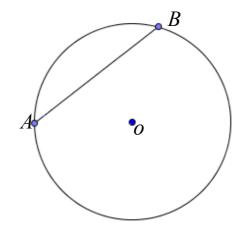
- A) 4^{10}
- B) $\frac{1}{10^4}$
- C) -40
- D) $\sqrt[4]{\frac{1}{10}}$

38) La solución de $\log_4(3x) = 1 + \log_4(x-2)$ es

- A) 1
- B) 8
- C) -1
- D) $-\frac{1}{2}$

O: centro de la circunferencia

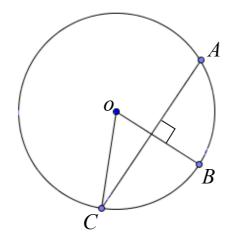
$$Q - P - O$$


$$B - R - C$$

$$A - P - B$$

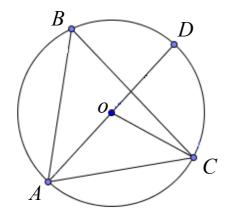
De acuerdo con los datos de la figura, si OP = OR = 7 y OQ = 8 entonces ¿cuál es la medida de \overline{BC} ?

- A) 8
- B) 14
- c) $2\sqrt{15}$
- D) $2\sqrt{113}$


O: centro de la circunferencia

De acuerdo con los datos de la figura anterior, si $m \ \widehat{AB} = 120^{\circ}$, y el diámetro es $\,8\,$ entonces la medida de la cuerda $\,AB\,$ es

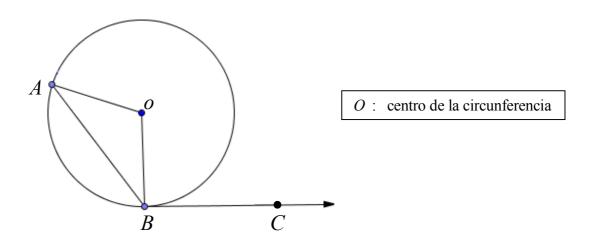
- A) 2
- B) 4
- c) $2\sqrt{3}$
- D) $4\sqrt{3}$


- 41) La medida del radio de una circunferencia de centro $\,P\,$ es $\,10\,$ Si \overline{QR} es una cuerda tal que QR = 16 entonces, ¿cuál es la distancia de la cuerda al punto $P_{?}$
 - A) 4
 - B) 6
 - C) 8
 - D) 10
- 42) Considere la siguiente figura:

O: centro de la circunferencia

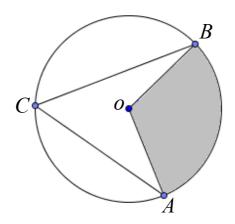
De acuerdo con los datos de la figura anterior, si $m \angle ACO = 38^{\circ}$ entonces ¿cuál es la medida del \widehat{AB} ?

- A) 38°
- B) 45°
- C) 52^{0}
- D) 90°



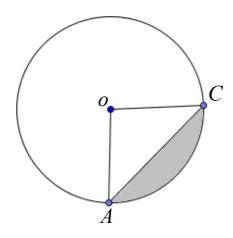
O: centro de la circunferencia

$$A - O - D$$


De acuerdo con los datos de la anterior figura, si $\widehat{mAB} = 104^{\circ}$, entonces $m \angle BAD$ es

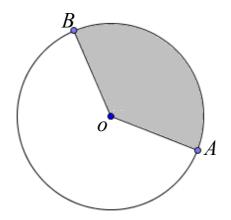
- A) 26°
- B) 32°
- C) 38^{0}
- D) 64⁰

De acuerdo con los datos de la figura anterior, si \overline{BC} es tangente a la circunferencia en B y $m \angle ABC = 112^{\circ}$ entonces \widehat{mAB} es


- A) 56^{0}
- B) 68°
- C) 124°
- D) 136⁰

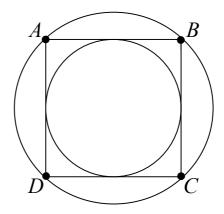
O: centro de la circunferencia

De acuerdo con los datos de la figura anterior, si el radio es 6 y $m \angle ACB = 55^{\circ}$, entonces el perímetro del sector circular sombreado con gris es


- A) $11\pi + 12$
- B) $\frac{11}{2}\pi + 12$
- c) $\frac{11}{3}\pi + 12$
- D) $\frac{11}{6}\pi + 12$

O: centro de la circunferencia

De acuerdo con los datos de la figura anterior, si la cuerda ACmide $\sqrt{8}$, entonces, ¿cuál es el área de la región sombreada?


- A) $\pi 2$
- B) 8π
- C) $2\pi 2$
- D) $4 \frac{\pi}{2}$

De acuerdo con los datos de la figura anterior, si $m \angle AOB = 150^{\circ}$ y la longitud del arco AB es de $\frac{3\pi}{2}$, entonces el área del sector sombreado, es aproximadamente

- A) 4,24
- B) 4,71
- C) 6,51
- D) 8,31

- 48) Si la medida de cada uno de los lados de un triángulo equilátero es 12, entonces ¿cuál es la medida del radio de la circunferencia al triángulo?
 - A) 6
 - B) $2\sqrt{3}$
 - c) $4\sqrt{3}$
 - D) $8\sqrt{3}$
- 49) Si un hexágono regular está circunscrito a una circunferencia y " ℓ " es la medida de uno de los lados, " r " es la medida del radio de la circunferencia, entonces. ¿cuál expresión representa a "r" en términos de " ℓ "?
 - A) $r = \ell$
 - $p) r = \frac{1}{2} \ell$
 - c) $r = \sqrt{3}\ell$
 - D) $r = \frac{\sqrt{3}}{2}\ell$

De acuerdo con los datos de la figura anterior, si C_1 es la circunferencia circunscrita al cuadrado ABCD , c_{2} es la circunferencia inscrita a dicho cuadrado, entonces considere las siguientes premisas:

- La medida del radio de C_1 es
- La medida de la apotema del cuadrado es igual a la II. medida del radio de \mathcal{C}_2

¿Cuáles de ellas son VERDADERAS?

- A) Ambas.
- B) Ninguna.
- C) Solo la I.
- D) Solo la II.

51) ¿Cuál es el volumen de un cilindro circular recto si el área lateral es 16π la medida de su altura es 2 ?

- A) 8π
- B) 32π
- C) 64π
- D) 128π

52) Si el área total de un cono circular recto de generatriz 10 es 75π , entonces el área lateral de dicho cono es

- A) 15π
- B) 25π
- C) 50π
- D) 150π

53) Si f es una función dada por f(x) = sen x, con $x \in]0$, $\pi[$ entonces el ámbito de f es

- A)] 0, 1 [
- B)] 0, 1]
- c) $0, \frac{1}{2}$
- D) [-1, 1]

54) Las siguientes proposiciones se refieren a la función $\,f\,$ dada por $f(x) = \cos x$

- I. El ámbito de f es $\mathbb R$ II. π es preimagen de -1

De ellas, ¿cuáles son VERDADERAS?

- A) Ambas.
- B) Ninguna.
- C) Solo la I.
- D) Solo la II.

55) Sea $f: \frac{\pi}{2}, \pi \mapsto \mathbb{R} \operatorname{con} f(x) = \tan x$. ¿Cuál es el ámbito de f?

- A) \mathbb{R}
- B)] -1, 1[
- C) $]0, \alpha$
- D) $\rceil \alpha$, $0 \lceil$

56) La expresión $\sec x - \sin x \cdot \tan x$ es equivalente a

A)
$$\cot x$$

B)
$$\cos x$$

C)
$$\frac{1-\cos x}{\sin x}$$

D)
$$\frac{1-\cos x}{\cos x}$$

 $\frac{sen^2x}{\cos x} + \cos x$ es equivalente a 57) La expresión

A)
$$\csc x$$

B)
$$\sec x$$

C)
$$\cos x$$

D)
$$\tan x + \cos x$$

58) La expresión $\sec(90^{\circ} - x) - \frac{\tan x}{\sec x}$ es equivalente a

A)
$$\cos x$$

$$B) \frac{\cos^2 x}{sen x}$$

C)
$$\frac{sen^2x}{\cos x}$$

$$D) \frac{1-sen x}{sen x}$$

59) La solución de $\cos^2 x = 3 - 2\cos x$ es

- A) 0 B) π
- C) $\frac{\pi}{2}$
- D) $\frac{3\pi}{2}$

60) Una solución de $(\sqrt{3} - \cot x) \csc x = 0$ es

- A) $\frac{\pi}{3}$
- B) $\frac{4\pi}{3}$
- C) $\frac{5\pi}{6}$
- D) $\frac{7\pi}{6}$

SÍMBOLOS

II	es paralela a						
	es perpendicular						
4	ángulo						
Δ	triángulo o discriminante						
~	es semejante a						
	cuadrilátero						
A-E-C	E está entre A y C (los puntos A, E y C son colineales)						

\overrightarrow{AB}	recta que contiene los puntos A y B						
\overrightarrow{AB}	Rayo de origen A y que contiene el punto B						
\overline{AB}	Segmento de extremos A y B						
AB	Medida del segmento \overline{AB}						
~	Es congruente con						
\widehat{AB}	arco(menor) de extremos A y B						
ÂBC	arco(mayor) de extremos A y C y que contiene el punto B						

FÓRMULAS

Fórmula de Herón (s: Semiperímetro, a, b y c son los lados del triángulo)	$A = \sqrt{s(s-a)(s-b)(s-c)}$ $S = \frac{a+b+c}{2}$		
Longitud de arco	$\pi r \cdot n^0$		
n^0 : medida del arco en grados	$L = \frac{\pi r \cdot n^0}{180^0}$		
Área de un sector circular	$\pi r^2 \cdot n^0$		
n^0 : medida del arco en grados	$A = \frac{\pi r^2 \cdot n^0}{360^0}$		
Área de un segmento circular	$A = \frac{\pi r^2 \cdot n^0}{360^0} - \text{área del } \Delta$		
n^0 : medida del arco en grados	$A = \frac{1}{360^{0}} - \text{area del } \Delta$		
Ecuación de la recta	y = mx + b		
Discriminante	$\Delta = b^2 - 4ac$		
Pendiente	$m = \frac{y_2 - y_1}{}$		
	$m = \frac{y_2 - y_1}{x_2 - x_1}$		
Vértice	$\left(\frac{-b}{2a}, \frac{-\Delta}{4a}\right)$		

Polígonos regulares

Medida de un ángulo interno n: número de lados del polígono	$m \angle i = \frac{180(n-2)}{n}$					
Número de diagonales n: número de lados del polígono	$D = \frac{n(n-3)}{2}$					
Área P: perímetro, a: apotema	$A = \frac{P \cdot a}{2}$					

Simbología r: radio	Triángulo equilátero	Cuadrado	Hexágono regular
d: diagonal	$1\sqrt{3}$	$d\sqrt{2}$	
a: apotema	$h = \frac{\iota \sqrt{s}}{2}$	$l = \frac{a \sqrt{2}}{2}$	$a = \frac{r\sqrt{3}}{\sqrt{3}}$
<i>ℓ:</i> lado	$a = \frac{h}{3}$		2
h: altura	3		

ÁREA Y VOLUMEN DE CUERPOS GEOMÉTRICOS

Figura	Volumen	Área total
Cubo	$V = a^3$	$A_T = 6a^2$
Pirámide	$V = \frac{1}{3} A_b h$	$A_T = A_B + A_L$
Prisma	$V = A_b h$	$A_T = A_B + A_L$
Esfera	$V = \frac{3}{4}\pi r^3$	$A_T = 4\pi r^2$
Cono (circular recto)	$V = \frac{1}{3}\pi r^2 h$	$A_T = \pi r (r+g)$
Cilindro	$V = \pi r^2 h$	$A_T = 2\pi r (r+h)$

Simbología

h: altura	a: arista	r: radio	g: generatriz
$A_{\!b}$: área de la base	$A_{\!\scriptscriptstyle L}$: área lateral	$A_{\!\scriptscriptstyle B}$: área basal	$A_{\!T}$: área total

SOLUCIONARIO

1	D	11	В	21	D	31	D	41	С	51	D
2	Α	12	Α	22	С	32	Α	42	Α	52	Α
3	В	13	В	23	C	33	Α	43	Α	53	В
4	Α	14	С	24	В	34	Α	44	Α	54	С
5	С	15	В	25	С	35	Α	45	D	55	Α
6	Α	16	D	26	С	36	С	46	D	56	Α
7	С	17	Α	27	D	37	Α	47	В	57	В
8	D	18	В	28	С	38	В	48	D	58	В
9	D	19	Α	29	Α	39	С	49	В	59	D
10	D	20	Α	30	С	40	Α	50	Α	60	D